Untitled

Direct (1)O2 optical excitation: A tool for redox biology.: Related Articles
Direct (1)O2 optical excitation: A tool for redox biology.
Redox Biol. 2017 May 25;13:39-59
Authors: Blázquez-Castro A
Abstract
Molecular oxygen (O2) displays very interesting properties. Its first excited state, commonly known as singlet oxygen ((1)O2), is one of the so-called Reactive Oxygen Species (ROS). It has been implicated in many redox processes in biological systems. For many decades its role has been that of a deleterious chemical species, although very positive clinical applications in the Photodynamic Therapy of cancer (PDT) have been reported. More recently, many ROS, and also (1)O2, are in the spotlight because of their role in physiological signaling, like cell proliferation or tissue regeneration. However, there are methodological shortcomings to properly assess the role of (1)O2 in redox biology with classical generation procedures. In this review the direct optical excitation of O2 to produce (1)O2 will be introduced, in order to present its main advantages and drawbacks for biological studies. This photonic approach can provide with many interesting possibilities to understand and put to use ROS in redox signaling and in the biomedical field.
PMID: 28570948 [PubMed - as supplied by publisher] http://bit.ly/2so1jfF

Comments